GENERAL APPROACHES TO FABRICATION AND ERECTION OF BRIDGE STEELWORKS BASICS AND TUTORIALS

FABRICATION AND ERECTION OF BRIDGE STEELWORKS GENERAL APPROACHES
What Are The General Approaches To Fabrication and Erection Of Bridge Steelworks


The objective in steel bridge construction is to fabricate and erect the structure so that it will have the geometry and stressing designated on the design plans, under full dead load at normal temperature.

This geometry is known as the geometric outline.

In the case of steel bridges there have been, over the decades, two general procedures for achieving this objective:

1. The “field adjustment” procedure — Carry out a continuing program of steelwork surveys and measurements in the field as erection progresses, in an attempt to discover fabrication and erection deficiencies; and perform continuing steelwork adjustments in an effort to compensate for such deficiencies and for errors in span baselines and pier elevations.

2. The “shop control” procedure — Place total reliance on first-order surveying of span baselines and pier elevations, and on accurate steelwork fabrication and erection augmented by meticulous construction engineering; and proceed with erection without any field adjustments, on the basis that the resulting bridge deadload geometry and stressing will be as good as can possibly be achieved.

Bridge designers have a strong tendency to overestimate the capability of field forces to accomplish accurate measurements and effective adjustments of the partially erected structure, and at the same time they tend to underestimate the positive effects of precise steel bridgework fabrication and erection.

As a result, we continue to find contract drawings for major steel bridges that call for field evolutions such as the following:

1. Continuous trusses and girders
— At the designated stages, measure or “weigh” the reactions on each pier, compare them with calculated theoretical values, and add or remove bearing-shoe shims to bring measured values into agreement with calculated values.

2. Arch bridges
— With the arch ribs erected to midspan and only the short, closing “crown sections” not yet in place, measure thrust and moment at the crown, compare them with calculated theoretical values, and then adjust the shape of the closing sections to correct for errors in span-length measurements and in bearing-surface angles at skewback supports, along with accumulated fabrication and erection errors.

3. Suspension bridges
— Following erection of the first cable wire or strand across the spans from anchorage to anchorage, survey its sag in each span and adjust these sags to agree with calculated theoretical values.

4. Arch bridges and suspension bridges — Carry out a deck-profile survey along each side of the bridge under the steel-load-only condition, compare survey results with the theoretical profile, and shim the suspender sockets so as to render the bridge floor beams level in the completed structure.

5. Cable-stayed bridges
— At each deck-steelwork erection stage, adjust tensions in the newly erected cable stays so as to bring the surveyed deck profile and measured stay tensions into agreement with calculated theoretical data.

There are two prime obstacles to the success of “field adjustment” procedures of whatever type: (1) field determination of the actual geometric and stress conditions of the partially erected structure and its components will not necessarily be definitive, and (2) calculation of the corresponding “proper” or “target” theoretical geometric and stress conditions will most likely prove to be less than authoritative.

Related post



0 comments:

Post a Comment

PREVIOUS ARTICLES