Natural Cementation and Aging
All soils undergo a natural cementation at the particle contact points. The process of aging seems to increase the cementing effect by a variable amount. This effect was recognized very early in cohesive soils but is now deemed of considerable importance in cohesionless deposits as well. 

The effect of cementation and aging in sand is not nearly so pronounced as for clay but still the effect as a statistical accumulation from a very large number of grain contacts can be of significance for designing a foundation.

A soil is said to be normally consolidated (nc) if the current overburden pressure (column of soil overlying the plane of consideration) is the largest to which the mass has ever been subjected. It has been found by experience that prior stresses on a soil element produce an imprint or stress history that is retained by the soil structure until a new stress state exceeds the maximum previous one. The soil is said to be overconsolidated (or preconsolidated) if the stress history involves a stress state larger than the present overburden pressure.

Mode of Deposit Formation
Soil deposits that have been transported, particularly via water, tend to be made up of small grain sizes and initially to be somewhat loose with large void ratios. They tend to be fairly uniform in composition but may be stratified with alternating very fine material and thin sand seams, the sand being transported and deposited during high-water periods when stream velocity can support larger grain sizes. These deposits tend to stabilize and may become very compact (dense) over geological periods from subsequent overburden pressure as well as cementing and aging processes.

Quality of the Clay
The term clay is commonly used to describe any cohesive soil deposit with sufficient clay minerals present that drying produces shrinkage with the formation of cracks or fissures such that block slippage can occur. Where drying has produced shrinkage cracks in the deposit we have a fissured clay. 

This material can be troublesome for field sampling because the material may be very hard, and fissures make sample recovery difficult. In laboratory strength tests the fissures can define failure planes and produce fictitiously low strength predictions (alternatively, testing intact pieces produces too high a prediction) compared to in situ tests where size effects may either bridge or confine the discontinuity.

Soil Water
Soil water may be a geological phenomenon; however, it can also be as recent as the latest rainfall or broken water pipe. An increase in water content tends to decrease the shear strength of cohesive soils. An increase in the pore pressure in any soil will reduce the shear strength. 

A sufficient increase can reduce the shear strength to zero—for cohesionless soils the end result is a viscous fluid. A saturated sand in a loose state can, from a sudden shock, also become a viscous fluid. This phenomenon is termed liquefaction and is of considerable importance when considering major structures (such as power plants) in earthquake-prone areas.

Related post


Carl Maxwell said...

It is really hard to consider that there are such problems that are happening to the soil as this is also used by most engineers in their construction sites. I have a friend who's a member of the oil and gas companies calgary and told me that they are also experiencing such problems and they find it hard to find solution on how they are going to solve this one.

Post a Comment